Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

3-D LDV Measurement of In-Cylinder Air Flow in a 3.5L Four-Valve SI Engine

1995-02-01
950648
In-cylinder flows in a motored four-valve SI engine were examined by simultaneous three-component LDV measurement. The purpose of this study was to develop better physical understanding of in-cylinder flows and quantitative methods which correlate in-cylinder flows to engine performance. This study is believed to be the first simultaneous three-component LDV measurement of the air flow over a planar section of a four-valve piston-cylinder assembly. Special attention is paid to the tumble formation process, three-dimensional turbulent kinetic energy, and measurement of the tumble ratio. The influence of the induction system and the piston geometry are believed to have a significant effect on the in-cylinder flow characteristics. Using LDV measurement, the flows in two different piston top geometries were examined. One axial plane was selected to observe the effect of piston top geometries on the flow field in the combustion chamber.
Technical Paper

3-D Numerical Study of Mixing Characteristics of NH3 in Front of SCR

2006-10-16
2006-01-3444
The Urea Selective Catalytic Reduction (SCR) technology is one of the major mature exhaust aftertreatment technologies which are demonstrated to be able to lower tail pipe NOx emission by 90%. The system consists of a urea injection at upstream pipe and a downstream SCR converter. A well mixed flow (exhaust gas and NH3) in front of SCR substrate, which is usually constrained by tight design packaging, is very critical to ensure the desired performance. Current paper addresses the geometrical effects on flow mixing by using three dimensional Computational Fluid Dynamics (CFD) tool. The mixing enhancement is achieved by adding flow mixer. The shapes and locations of flow mixers, as well as the number of blades inside mixer are investigated to show the effect on fluid mixing in downstream along the flow direction. Results show great improvement of flow mixing by adding a delta wing mixer.
Technical Paper

3-D PIV Analysis of Structural Behavior of D.I. Gasoline Spray

2001-09-24
2001-01-3669
Three-dimensional behaviors of direct injection (D.I.) gasoline sprays were investigated using 2-D and 3-D particle image velocimetry (PIV) techniques. The fuel was injected with a swirl type injector for D.I. gasoline engines into a constant volume chamber in which ambient pressure was varied from 0.1 to 0.4 MPa at room temperature. The spray was illuminated by a laser light sheet generated by a double-pulsed Nd:YAG laser (wave length: 532 nm) and the succeeding two tomograms of the spray were taken by a high-resolution CCD camera. The 2-D and 3-D velocity distributions of the droplet cloud in the spray were calculated from these tomograms by using the PIV technique. The effects of the swirl groove flows in the injector and the ambient pressure on the structural behavior of the droplet cloud in the spray were also examined.
Journal Article

360° Surround View System with Parking Guidance

2014-04-01
2014-01-0157
In this paper, we present a real-time 360 degree surround system with parking aid feature, which is a very convenient parking and blind spot aid system. In the proposed system, there are four fisheye cameras mounted around a vehicle to cover the whole surrounding area. After correcting the distortion of four fisheye images and registering all images on a planar surface, a flexible stitching method was developed to smooth the seam of adjacent images away to generate a high-quality result. In the post-process step, a unique brightness balance algorithm was proposed to compensate the exposure difference as the images are not captured with the same exposure condition. In addition, a unique parking guidance feature is applied on the surround view scene by utilizing steering wheel angle information as well as vehicle speed information.
Journal Article

3D Auditory Displays for Parking Assistance Systems

2017-04-11
2017-01-9627
The objective of this study was to investigate if 3D auditory displays could be used to enhance parking assistance systems (PAS). Objective measurements and estimations of workload were used to assess the benefits of different 3D auditory displays. In today’s cars, PAS normally use a visual display together with simple sound signals to inform drivers of obstacles in close proximity. These systems rely heavily on the visual display, as the sound does not provide information about obstacles' location. This may cause the driver to lose focus on the surroundings and reduce situational awareness. Two user studies (during summer and winter) were conducted to compare three different systems. The baseline system corresponded to a system normally found in today’s cars. The other systems were designed with a 3D auditory display, conveying information of where obstacles were located through sound. A visual display was also available. Both normal parking and parallel parking was conducted.
Technical Paper

3D CFD Analyses of Intake Duct Geometry Impact on Tumble Motion and Turbulence Production in SI Engines

2017-10-08
2017-01-2199
In recent years, engine manufacturers have been continuously involved in the research of proper technical solutions to meet more and more stringent CO2 emission targets, defined by international regulations. Many strategies have been already developed, or are currently under study, to attain the above objective. A tendency is however emerging towards more innovative combustion concepts, able to efficiently burn lean or highly diluted mixtures. To this aim, the enhancement of turbulence intensity inside the combustion chamber has a significant importance, contributing to improve the burning rate, to increase the thermal efficiency, and to reduce the cyclic variability. It is well-known that turbulence production is mainly achieved during the intake stroke. Moreover, it is strictly affected by the intake port geometry and orientation.
Technical Paper

3D CFD Analysis of the Influence of Some Geometrical Engine Parameters on Small PFI Engine Performances - The Effects on Tumble Motion and Mean Turbulent Intensity Distribution

2012-10-23
2012-32-0096
In scooter/motorbike engines coherent and stable tumble motion generation is still considered an effective mean in order to both reduce engine emissions and promote higher levels of combustion efficiency. The scientific research also assessed that squish motion is an effective mean for speeding up the combustion in a combustion process already fast. In a previous technical paper the authors demonstrated that for an engine having a high C/D ratio the squish motion is not only not necessary but also detrimental for the stability of the tumble motion itself, because there is a strong interaction between these two motions with the consequent formation of secondary vortices, which in turn penalizes the tumble breakdown and the turbulent kinetic energy production.
Technical Paper

3D Design and Surface Mapping of Disc Brake Pad for High Speed Train Using FEA

2018-04-03
2018-01-0841
Recurrently, the increase in production of high-speed trains worldwide has become a confirmed fact. Seeking to use the high-speed trains locally to link the capital of Egypt “Cairo” with the new industrial cities has become a national requirement. Modeling 3D surface maps using finite element analysis (FEA) is one of the most important mechanical design tools for frictional parts to facilitate the manufacture of brake systems for heavy duty vehicles, especially high-speed trains due to difficult working conditions. In this paper, we presented simulate 3D surface maps for proposed frictional material pad using FEA at certain design parameters and experimental result conductions. The typical surface characteristics of disc brake pad are compared with commonly used materials in railway and vehicle brakes in Egypt.
Technical Paper

3D Inside Vehicle Acoustical Holography

2002-07-09
2002-01-2228
A continuously growing demand comes from the automotive industry in order to get an experimental tool allowing for the optimization of materials and sound insulating products implementation inside the car, so as to propose the best acoustic performance at reduced costs. The acoustical imaging system LORHA provides part of the solution and its demonstrated capability of measuring the acoustic field inside a vehicle makes it an advanced tool for performing extensive studies of the acoustic transparency of car openings. This paper focuses on the methodology and recent operational results obtained within the tight collaboration established between METRAVIB RDS, its partner HUTCHINSON and well known car manufacturers.
Technical Paper

3D Large Scale Simulation of the High-Speed Liquid Jet Atomization

2007-04-16
2007-01-0244
In this paper three-dimensional Large Eddy Simulations (i.e., LES) by using a PLIC-VOF method have been adopted to investigate the atomization process of round liquid jets issuing from automotive multi-hole injector-like nozzles. LES method is used to compute directly the effect of the large flow structure, being the smallest one modelled. A mesh having a cell size of 4 μm was used in order to derive a statistics of the detached liquid structures, i.e. droplets and ligaments. The latter have been identified by using an algorithm coded by authors. Cavitation modeling has not been included in the present computations. Two different mean injection nozzle flow velocities of 50 m/s and 270 m/s, corresponding to two mean nozzle flow Reynolds numbers of 1600 and 8700, respectively, have been considered in the calculations as representative of laminar and turbulent nozzle flow conditions.
Journal Article

3D Scene Reconstruction with Sparse LiDAR Data and Monocular Image in Single Frame

2017-09-23
Abstract Real-time reconstruction of 3D environment attributed with semantic information is significant for a variety of applications, such as obstacle detection, traffic scene comprehension and autonomous navigation. The current approaches to achieve it are mainly using stereo vision, Structure from Motion (SfM) or mobile LiDAR sensors. Each of these approaches has its own limitation, stereo vision has high computational cost, SfM needs accurate calibration between a sequences of images, and the onboard LiDAR sensor can only provide sparse points without color information. This paper describes a novel method for traffic scene semantic segmentation by combining sparse LiDAR point cloud (e.g. from Velodyne scans), with monocular color image. The key novelty of the method is the semantic coupling of stereoscopic point cloud with color lattice from camera image labelled through a Convolutional Neural Network (CNN).
Technical Paper

3D Simulation of Induction Port Flow of a Four-Valve Engine Configuration

1992-02-01
920586
Steady induction port flow has been simulated in a complex configuration, which is modelled on a four-valve engine with a pent-roof chamber. The numerical solution has been obtained using a finite volume method coupled with the standard k - ε turbulence model. It is shown that the 3D flow field is characterised by large vortices with horizontal axes induced by the inlet jets, and by flow interaction between inlet jets from both valves. Special attention has been paid to flow distributions in the valve curtain areas. Velocity and turbulence energy profiles have been obtained in these areas and compared with previous hot-wire measurements and 2D calculations using Reynolds stress models as well as the k - ε model. The findings in this study are expected to enhance our understanding of complex engine induction port flows and to provide better boundary conditions for in-cylinder flow calculations
Technical Paper

3D Vortex Simulation of Intake Flow in a Port-Cylinder with a Valve Seat and a Moving Piston

1996-05-01
961195
A Lagrangian random vortex-boundary element method has been developed for the simulation of unsteady incompressible flow inside three-dimensional domains with time-dependent boundaries, similar to IC engines. The solution method is entirely grid-free in the fluid domain and eliminates the difficult task of volumetric meshing of the complex engine geometry. Furthermore, due to the Lagrangian evaluation of the convective processes, numerical viscosity is virtually removed; thus permitting the direct simulation of flow at high Reynolds numbers. In this paper, a brief description of the numerical methodology is given, followed by an example of induction flow in an off-centered port-cylinder assembly with a harmonically driven piston and a valve seat situated directly below the port. The predicted flow is shown to resemble the flow visualization results of a laboratory experiment, despite the crude approximation used to represent the geometry.
Journal Article

3D-3D Self-Calibration of Sensors Using Point Cloud Data

2021-04-06
2021-01-0086
Self-calibration of sensors has become highly essential in the era of self-driving cars. Reducing the sensors’ errors increases the reliability of the decisions made by the autonomous systems. Various methods are currently under investigation but the traditional methods still prevail which maintain a strong dependency on human experts and expensive equipment that consume significant amounts of labor and time. Recently, various calibration techniques proposed for extrinsic calibration for Autonomous Vehicles (AVs) mostly rely on the camera 2D images and depth map to calibrate the 3D LiDAR points. While most methods work with the whole frame, some methods use the objects in the frame to perform the calibration. To the best of our knowledge, majority of these self-calibration methods rely on using actual or falsified ground truth values.
Technical Paper

3D-CFD Flow Structures in Journal Bearings

2009-11-02
2009-01-2688
Hydrodynamic radial journal bearings under unsteady load, which are common for automotive applications, are exposed to cavitation, e.g. flow, suction, shock and exit cavitation. The fluid mechanic description of the flow in journal bearings takes advantage of the small bearing clearance, which allows the reduction of the Navier-Stokes equations and leads to the Reynolds equation. The Reynolds equation is two-dimensional, the radial pressure gradient and the radial velocity component are neglected. However, the equation includes the surface velocities, oil density and viscosity and describes the relation between hydrodynamic pressure and local clearance. With the introduction of a cavitation index or a mass flow coefficient a powerful method to carry out numerical studies can be created, which allows the calculation of flow properties and the prediction of regions where the lubrication film disintegrates.
Technical Paper

3D-PIV Measurement and Visualization of Streamlines Around a Standard SAE Vehicle Model

2011-04-12
2011-01-0161
In CFD (Computational Fluid Dynamics) verification of vehicle aerodynamics, detailed velocity measurements are required. The conventional 2D-PIV (Two Dimensional Particle Image Velocimetry) needs at least twice the number of operations to measure the three components of velocity ( u,v,w ), thus it is difficult to set up precise measurement positions. Furthermore, there are some areas where measurements are rendered impossible due to the relative position of the object and the optical system. That is why the acquisition of detailed velocity data around a vehicle has not yet been attained. In this study, a detailed velocity measurement was conducted using a 3D-PIV measurement system. The measurement target was a quarter scale SAE standard vehicle model. The wind tunnel system which was also designed for a quarter scale car model was utilized. It consisted of a moving belt and a boundary suction system.
Technical Paper

3DOF Vehicle Dynamics Model for Fuel Consumption Estimation

2024-04-09
2024-01-2757
The dynamic model is built in Siemens Simcenter Amesim platform and simulates the performances on track of JUNO, a low energy demanding Urban Concept vehicle to take part in the Shell Eco-Marathon competition, in which the goal is to achieve the lowest fuel consumption in covering some laps of a racetrack, with limitations on the maximum race time. The model starts with the longitudinal dynamics, analysing all the factors that characterize the vehicle’s forward resistance, like aerodynamic forces, altimetry changes and rolling resistance. To improve the correlation between simulation and track performances, the model has been updated with the implementation of a Single-Track Model, including vehicle rotation around its roll axis, and a 3D representation of the racetrack, with an automatic trajectory following control implemented. This is crucial to characterise the vehicle’s lateral dynamics, which cannot be neglected in simulating its performances on track.
Technical Paper

41 Study of the Impact to the water Quality by Marine Engine Exhaust Emissions

2002-10-29
2002-32-1810
Starting with the laboratory study, the amount of exhaust emission compound dissolved in water was measured, and the divergence of exhaust emission compounds was reviewed. Measurements were taken for hydrocarbon (HC), especially benzene, toluene, m-Xylene, p-Xylene, and o-Xylene. It was verified that the amount of exhaust emission compounds dissolved in water has positive correlation with the volume of exhaust gas introduced into the water. The dissolved amount was smaller with the low emission engine model. Volatile Organic Compound (VOC) decreased sharply at the beginning, but the decrement got smaller after a certain period of time. Next research was performed on the actual river where PWC are being used. We looked into the possible correlation between the VOC's concentration in water and the distance to the water where a lot of PWC's are running. In addition the MTBE (Methyl Tertiary-Butyl Ether) concentration was measured.
Technical Paper

4300 F Thermocouples for Re-Entry Vehicle Applications Part II

1963-01-01
630360
This paper presents a discussion of the component evaluation and design development work performed in developing a 4300 F reentry vehicle nose cap temperature sensor. Material compatabilities, insulation resistance, and atmospheric pressure effects on bare wire calibration data are discussed in some detail. The final design is outlined and the application problems discussed. The probe utilizes: a sintered iridium high temperature sheath (4300 F) and platinum 20% rhodium as the low temperature sheath (3000 F); beryllia as insulation -- hard fired at 4300 F and compacted powder at 3000 F; tungsten versus tungsten 26% rhenium as the thermocouple pair.
Technical Paper

4300°F Thermocouples for Re-entry Vehicle Applications – Part I

1963-01-01
630359
This paper discusses work performed in research, design, and development of sensors for measurement of local dynamic surface temperatures on re-entry vehicles. Included are discussions of the basic requirements and related system design factors, the transducer concepts and sensor assembly configurations considered, and the materials investigations and engineering tests conducted. Design requirements are presented for the twin-lead thermocouple probe temperature sensor chosen as the most feasible concept for early implementation. The most promising thermocouple materials and fabrication processes are defined and the additional precision testing and development requirements for final design are outlined. Information not previously reported in available literature includes preliminary data from tests up to4300°F showing (1) excellent oxidation resistance of Iridium, and (2) oxidation protection of thermocouple elements in “gas tight” sheaths of thoria and zirconia.
X